Communication-Efficient Learning of Deep Networks from Decentralized Data
H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017
2017
LettoFondamentale
Abstract: Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates...
Le mie note:
Questo è il paper fondamentale che ha introdotto FedAvg, l'algoritmo base del federated learning. Introduce il concetto di training distribuito senza condividere i dati raw, solo aggiornamenti dei modelli.
Punti chiave per il mio progetto:
La comunicazione è un collo di bottiglia fondamentale
L'eterogeneità dei dati (non-IID) è una sfida significativa
Il campionamento dei client influisce molto sulla convergenza
Federated LearningFedAvgMobile
Advances and Open Problems in Federated Learning
Peter Kairouz, H. Brendan McMahan, et al.
Foundations and Trends in Machine Learning
2021
In letturaAlta priorità
Abstract: Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches...
Federated LearningSurveyPrivacy
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Mengdi Li, Tianhao Wang, et al.
IEEE Transactions on Information Forensics and Security
2022
Alta prioritàPrivacy
Abstract: Federated learning (FL) is a distributed machine learning paradigm that enables a large number of clients to collaboratively learn a shared model while keeping their data locally. To enhance privacy, FL is commonly combined with differential privacy (DP), which offers a mathematically rigorous notion of privacy with well-established statistical properties...
Federated LearningPrivacy DifferenzialePrivacy
Documenti su Google Drive
Accedi alla raccolta completa di documenti di ricerca, tesi e materiali di studio relativi al progetto.
Repository Documenti di Ricerca
Questa cartella contiene tutti i documenti relativi al progetto di ricerca, inclusi paper, tesi, appunti e materiale didattico organizzato per argomento.
Per accedere ai documenti su Google Drive potrebbe essere necessario effettuare l'accesso con il tuo account Google. Se riscontri problemi di autorizzazione, contatta l'amministratore della cartella.